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ABSTRACT

Hyperparameter tuning for graph drawing algorithms yields en-
hanced drawing results; however, it is a difficult and time-consuming
task. Therefore, we propose an approach to apply a hyperparameter
optimization technique to graph drawing algorithms. In this paper,
we report on the results of three computational experiments to show
the effectiveness of our approach using a graph drawing algorithm,
Sparse SGD, as a trial of concept.

Index Terms: Human-centered computing— Visualization—
Visualization techniques—Graph drawings; Applied computing—
Operations research—Decision analysis—Multi-criterion optimiza-
tion and decision-making;

1 INTRODUCTION

Graph drawing algorithms are widely used to visualize network
data [4]. Various graph drawing algorithms have been proposed,
and most of them require several parameters (e.g., the number of
iterations and cooling schedule for simulated annealing) to adjust
the drawing results. These parameters are called hyperparameters
and have a significant effect on the drawing quality. Graph drawing
users tune hyperparameters to obtain better drawings; however, this
is a time-consuming and difficult task.

In machine learning (ML), hyperparameter optimization (HPO)
techniques that automatically adjust the hyperparameters of an ML
model are often used to improve the prediction accuracy of the
model. Inspired by HPO in the ML field, we introduce HPO in
graph drawing. To optimize the quality of drawing results, it is nec-
essary to represent the quality of the drawing results by quantitative
metrics. We employ several quantitative quality metrics used in the
quantitative evaluation of drawing results (e.g., stress and the num-
ber of edge crossings) and formalize a multiobjective HPO problem
for graph drawing.

We performed computational experiments of HPO on benchmark
network data for one graph drawing algorithm, Sparse SGD [5],
as a trial of concept. In this paper, we present the results, which
indicate the effectiveness of our proposed approach of applying an
HPO technique to graph drawing algorithms.

2 HPO FOR GRAPH DRAWING

First, we introduce some notations for formalizing HPO problems for
graph drawing. Let G = (V, E) be a graph (V, E are set of vertices and
edges, respectively) and D¢ be a drawing of G. A layout algorithm
f takes a set of hyperparameters P = (P}, Py, - 7Pnf) where ny
is the number of hyperparameters for the algorithm f. Let S =
S1 X8y X --- X Sy, be a domain of hyperparameters. A drawing D¢
is determined as Dg = f(G,P) where P € S. The quality of Dg is
described as Q(Dg) = (Q1(Dg),02(Dg), -+ ,Om(Dg)) where m is
the number of quality metrics. Notably, some quality metrics Q}(Dg)
are desirable to be low; however, by setting Q;(Dg) = —Q}(D¢) we
can assume that all quality metrics are desirable to be high. In
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reality, many graph drawing algorithms have randomness, so the
same graph and hyperparameters do not always produce the same
drawing. Therefore, the statistical value of the results of a sufficient
number of trials is adopted as the value of each quality metric.

An HPO problem is formalized as follows:

arg max.Q(f(G, P)) ey
Pes

Generally, there are tradeoffs among quality metrics, and not all met-
rics can be maximized simultaneously. Therefore, our goal is to find
a Pareto frontier F of hyperparameters. The Pareto optimal solutions
PSP € F(P* # P') satisfies 3i € {1,2,---,m} : Q;(f(G,P*)) >
Qi(f(G,P")). In this study, we used Optuna [2], an HPO frame-
work, to find the Pareto frontier.

3 COMPUTATIONAL EXPERIMENTS

We performed computational experiments to confirm that the pro-
posed approach generates parameters that obtain good values of the
quality metrics.

3.1 Hypotheses
We describe three hypotheses about the proposed approach.

* Hypothesis 1: Quality metrics can be optimized using the
proposed approach.

* Hypothesis 2: Optimized parameters using the proposed ap-
proach can obtain good drawing quality.

* Hypothesis 3: Optimized parameters using the proposed ap-
proach can be applied to any graph to obtain a good drawing
quality.

Graph drawing algorithms attempt to generate good drawings ac-
cording to their criteria. This does not necessarily optimize external
metrics, such as quality metrics. Therefore, it is not obvious whether
tuning hyperparameters improves quality metrics. Hypothesis 1
was set up to clarify this. As aforementioned, quality metrics have
tradeoffs in various manners. Considering multiple quality metrics
while tuning is important; therefore, we formulated Hypothesis 2.
In the proposed approach, a particular graph is drawn many times
and the qualities are measured. Consequently, it takes a long time to
generate parameters for large-scale graphs. Therefore, applying the
parameters generated using a relatively small graph to a relatively
large graph reduces the time taken for optimization. In addition,
parameters that show good quality across different graphs are con-
sidered good parameters for that layout algorithm. Based on this,
we set up Hypothesis 3.

3.2 Experimental Design

In the experiments, we use the following quality metrics described
in Ahmed et al. [1]: angular resolution (ANR), aspect ratio (AR),
crossing angle (CA), crossing number (CN), Gabriel graph property
(GB), ideal edge length (IE), node resolution (NR), shape-based
metrics (SB), and stress (ST). For the layout algorithm, we use
the Sparse SGD, which minimizes the stress function based on the
stochastic gradient descent approach. To confirm the effectiveness
of the HPO, we compare the distributions of quality metrics using
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Figure 1: Distributions of quality metrics on 1138-bus graph with (a) Pareto frontier optimized with 1138-bus graph, (b) Pareto frontier optimized
with lesmis graph, (c) empirical parameters, and (d) randomly generated parameters.
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Figure 2: Distributions of quality metrics on US-Grid graph with (a) Pareto frontier optimized with US-Grid graph, (b) Pareto frontier optimized with
1138-bus graph, (c) Pareto frontier optimized with lesmis graph, (d) empirical parameters, and (e) randomly generated parameters.

empirically used parameters and randomly generated parameters.
The domains of the hyperparameters were set to [1,100] for the
number of pivots, [1,200] for the number of iterations, and [0.01, 1]
for the € used to control the step size for each iteration. We used 50
for the number of pivots, 100 for the number of iterations, and 0.1
for the € as a set of empirical parameters.

In Experiment 1, we assessed whether each quality metric could
be optimized using the proposed approach. Specifically, we opti-
mized hyperparameters using a single quality metric as an objective
function and compared the optimized parameters with 20 randomly
generated parameters. A quality metric is considered to be optimized
if the quality metric using the optimized parameter is in the 75th
percentile of the quality metric using the randomly generated pa-
rameters. In Experiment 2, we compare the distributions of quality
metrics with parameters contained in the optimized Pareto fron-
tier, empirical parameters, and randomly generated parameters. In
Experiment 3, we measure the quality metrics by applying param-
eters optimized on a smaller graph to a bigger graph. This would
suggest the generality of the effect of hyperparameters on quality
metrics. For Experiments 2 and 3, 100 empirical parameters and
100 randomly generated parameters were used.

We chose three graphs, lesmis(|V| = 77,|E| = 254), 1138-bus
([V] = 1138,|E| = 1458), and US-Grid (|V| = 4941, |E| = 6594)
from well-known benchmark datasets [3] to be drawn. In addi-
tion, we empirically set the number of trials for exploring optimal
hyperparameters in Optuna to 100 for Experiment 1 and 200 for
Experiments 2 and 3.

3.3 Results

From Experiment 1, we confirmed that optimized parameters out-
performed randomly generated parameters on all three graphs for
quality metrics ANR, CN, IE, NR, SB, and ST. There were no signif-
icant differences from the randomly generated parameters in other
quality metrics (AR, CA, and GB). Therefore, we used only six
quality metrics ANR, CN, IE, NR, SB, and ST for the subsequent
experiments.

Figures 1 and 2 show the distributions of quality metrics for each
condition on 1138-bus and US-Grid data, respectively. Outliers have
been omitted from the boxplots to avoid irrelevant results. Figures 1
(a), (¢), and (d) and Figures 2 (a), (d), and (e) depict the results of
Experiment 2. We confirmed that the parameters contained in the
optimized Pareto frontier outperformed the empirical and randomly
generated parameters in most quality metrics. Figures 1 (a) and (b)
and Figures 2 (a), (b), and (c) depict the results of Experiment 3.
The results suggest no significant difference when the parameters
optimized in one graph are applied to other graphs in most cases.

Although omitted due to space limitations, similar results were
confirmed for the lesmis graph.

3.4 Discussion

Through experiments, optimizing the hyperparameters of Sparse
SGD can improve the values of several quality metrics compared
with empirical parameters and randomly generated parameters.
From the results of Experiment 1, Hypothesis 1 was partially sup-
ported, and some quality metrics were confirmed to be optimizable.
From the results of Experiment 2, the proposed approach can tune
multiple quality metrics simultaneously, which is difficult even for
experts. In addition, from the results of Experiment 3, Hypotheses 2
and 3 were suggested to be supported.

4 CONCLUSION AND FUTURE WORK

In this study, we proposed an approach for optimizing the hyper-
parameters of graph drawing and performed computational experi-
ments to show the effectiveness of the proposed approach. In future
work, we will optimize the parameters of various graph drawing
algorithms and conduct a user study to analyze user preferences.
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