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ABSTRACT

In this work, we propose a novel approach to examine spatiotem-
poral causality using a visual analytics framework. Our framework
objective is to expand the traffic causal tree by applying the tech-
niques of Mutual information and Granger causality. To analyze
traffic causality, the visual analytics framework computes the mu-
tual information and causality of traffic data across the entire road
network, allowing users to scrutinize the relationship between them.
The study’s key contributions are a new visual analytics framework
for examining spatiotemporal traffic causality and an evaluation of
the framework’s practicality using real-world data.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual analytics; Information
systems—Information systems applications—Decision support
systems—Data analytics;

1 INTRODUCTION

Recurring traffic congestion causes delays and significant social
costs. To alleviate these problems, several studies have been pro-
posed, including traffic jam type analysis [4], traffic flow pattern
analysis [7], and signal time optimization [6]. In this paper we aim to
analyze the root causes of traffic congestion and identify structural
issues within the urban traffic network. We introduce a novel visual
analytics framework to examine spatiotemporal causality. We con-
centrate on identifying spatiotemporal traffic causality within small
areas using the Mutual Information (MI) and Granger causality. The
proposed framework allows users to analyze the correlation between
MI and causality of traffic data across the entire road network. The
framework is intended to analyze the spatiotemporal causality of
small areas while expanding the traffic causal tree. Our framework
calculates MI and causal density using traffic volume and speed
data to measure the mutual dependence of two random variables
with entropy and to determine the strength of traffic causality using
the Granger causality test, respectively. MI quantifies the mutual
dependence of two random variables with entropy. Causal density
measurement aids in the selection of significant causality among
numerous ones. The distance of each road’s travel is related to causal-
ity, and the spatiotemporal characteristics of the road network must
be considered to avoid deriving inaccurate causality in the traffic
causality analysis. The study’s contributions are a novel visual ana-
lytics framework for analyzing spatiotemporal traffic causality and
an evalution of the framework’s practicality using real-world data.

2 MUTUAL INFORMATION

Entropy is a representative method of measuring the amount of
information in information theory. The entropy of X is represented
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as follows.
H(X) =− ∑

x∈X
p(x)log(p(x))

The joint entropy of X and Y is computed as follows.

H(X ,Y ) =− ∑
x,y∈X ,Y

p(x,y)log(p(x,y)) ,

where statistically H(X ,Y ) = H(X)+H(Y ) when the two variables
X and Y are independent. MI quantifies the mutual dependence of
two random variables with entropy.

I(X ,Y ) = ∑
x,y

p(x,y)log
(

p(x)p(y)
p(x,y)

)
,

where I(X ,Y ) = H(X) +H(Y )−H(X ,Y ) = H(X)−H(X | Y ) =
H(Y )−H(Y | X). At this time, MI has 0 if the two variables X
and Y are independent. When MI ̸= 0, MI measures the mutual
dependence of the two variables X and Y , which means how much
the mutual uncertainty is reduced [1].

3 CAUSAL CALCULATION

Causality refers to the idea that an event can cause another event
to occur. The Granger causality test has been proposed to analyze
the causal relationship between two variables [2]. However, this
test only determines the existence of a causal relationship without
measuring its strength. To address this limitation, Seth [5] proposed
a method that assigns a numerical value to the causal relationship
called causal density. Causal density is the average of G-causality
within a framework, and it measures the ratio of two variances when
the variable Y has G-causality to the variable X , such as Equation 1.

F{Y→X} =: ln
var(ε ′x(t))
var(εx(t))

(1)

CD(X) =:
1

n(n−1) ∑
i ̸= j

F{Xi→X j} (2)

The calculation of the causal density involves a comparison of
variances across all the elements in the framework, as expressed in
Equation 2. This value serves as an indicator of the dynamical com-
plexity, with a CD of 0 suggesting that the elements are completely
independent of one another.

4 VISUAL ANALYTICS FRAMEWORK

We describe our visual analytics framework used to analyze traffic
network models and causal traffic patterns in Manchester speed
data [3], recorded at 5-minute intervals illustrated in Fig. 1. The
causal relationship analysis begins when a user selects a node pair
according to the MI value in (a). Note that the darker the color of
the heatmap, the higher MI. The cause node X and effect node Y are
the nodes corresponding to the row and column of the cell selected
in (a). In (b), a heatmap shows the causal density by the time lag
between the pair of nodes selected in (a). (b-1) and (b-2) are the
causal density heatmap from the cause node X to the other node and
effect node Y to the other node, respectively. Similar to (a), for (b),



Figure 1: A visual analytics framework used to analyze traffic network
models and traffic flow propagation patterns in Manchester. (a) is a
heat map for the MI between each node of traffic data. (b) is a causal
density heat map, where (b-1) and (b-2) are causal density heat maps
for cause and effect nodes, respectively. (c) is a visualization of nodes
on a map, and (d) is a causal graph that the user generates.

the darker the color of the heatmap, the higher the causal density
value of the node pair. (c) shows the positions of the nodes on the
map. Users can also select other node pairs and time lag through
(b). The framework is updated accordingly by any cause node, effect
node, or time lag is changed. Finally, the user clicks the apply button
(d-1) to create or expands a causal relationship tree in (d).

5 CASE STUDY

We evaluate the framework’s practicality using real-world data. This
case study is conducted for experts who worked traffic analysis
research for 13 years to discover causal traffic relationships within
small areas. We used traffic data [3] from Manchester, England,
recorded at 5-minute intervals to showcase the functionality of their
proposed framework and evaluate its usefulness with domain experts.
Fig. 2 (a) and (b) display the causal density heatmaps for nodes A
and B, respectively. In (b), node B shows a high causal density for
different time lags of nodes C and D, as demonstrated in the causal
tree graph in (c). The expert noted that the strong causal density from
node B to node D might have been influenced by external nodes
excluding nodes B and D. Therefore, expert analyzed node C, which
showed strong causal density in node B. (d) shows the causal density
heatmap for node C, which was added to the causal relationship tree.
Node B was added as the child of node C again for time lag 9 with
the highest causal density, as shown in (e). While the influence of
the traffic flow between nodes A, B, and D proceeds in one direction
after time lag 12, the expert found that during time lags 4 and 9 at
nodes B and C, the effect of the traffic flow was circular. As a result,
the expert deduced that the traffic flows from node B to C and then
back to node B affect node D. The expert noted that the circulation of
these traffic flows requires geographical information and identified
node B as a road connecting the intersections of nodes C and D. The
expert mentioned that the flow circulations between nodes B and
C may be caused by congestion factors such as signal time at the
intersection of node C or road capacity, and that node B affects node
D again because it is a road connecting the two intersections. Finally,
the expert emphasized that resolving the congestion problem at node
C is essential if traffic congestion occurs in the area comprising
nodes A, B, C, and D.

Figure 2: This is a case study for Manchester data. (a), (b) is a causal
density heatmap for nodes A and B, and (c) is a causal graph for A,
B, C, and D. (d) is a causal density heatmap for node C, and (e) is a
graph with the addition of the direction of the causal relationship from
C to B. (f) is the visualization of A, B, C and D on the map according
to the direction of the causal density.

6 CONCLUSION

In this paper, we introduced a novel framework for analyzing traffic
flow to assist in making decisions about traffic policies and tracking
congestion. The framework involves constructing a tree of causal
relationships between different traffic nodes, which is achieved by
calculating the mutual information and causal density of traffic data.
The framework’s usefulness has been demonstrated using a real
dataset, and we propose will be improved through future work by
using more diverse data and methods, and developing new visualiza-
tion methods.
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